

Is it Early to Tell TAVR in All Patients with Aortic Stenosis?

Jian (James) Ye, MD, FRCSC

Clinical Professor of Surgery
Division of Cardiovascular Surgery
St. Paul's Hospital and Vancouver General Hospital
University of British Columbia, Vancouver, Canada

Disclosure

Consultant:

Edwards Lifesciences
JC Medical Inc.

The PARTNER 3 Trial

The NEW ENGLAND
JOURNAL of MEDICINE

Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients

M.J. Mack, M.B. Leon, V.H. Thourani, R. Makkar, S.K. Kodali, M. Russo, S.R. Kapadia, S.C. Malaisrie, D.J. Cohen, P. Pibarot, J. Leipsic, R.T. Hahn, P. Blanke, M.R. Williams, J.M. McCabe, D.L. Brown, V. Babaliaros, S. Goldman, W.Y. Szeto, P. Genereux, A. Pershad, S.J. Pocock, M.C. Alu, J.G. Webb, and C.R. Smith, for the PARTNER 3 Investigators.

The NEW ENGLAND JOURNAL of MEDICINE

RETABLISHED (N 1812)

OCTOBER 21, 2010

VOI. 303 NO. 17

Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery

Martin B. Leon, M.D., Craig R. Smith, M.D., Michael Mack, M.D., D. Craig Miller, M.D., Jeffrey W. Moses, M.D., Lars G. Svensson, M.D., Ph.D., E. Murat Tuzcu, M.D., John G. Webb, M.D., Gregory P. Fontana, M.D., Raj R. Makkar, M.D., David L. Brown, M.D., Peter C. Block, M.D., Robert A. Guyton, M.D., Augusto D. Pichard, M.D., Joseph E. Bavana, M.D., Howard C. Herrmann, M.D., Pamela S. Douglas, M.D., John L. Petersen, M.D., Jodi J. Akin, M.S., William N. Anderson, Ph.D., Duolao Wang, Ph.D., and Stuart Pocock, Ph.D., for the PARTNER Trial Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

SUTVINISHED OF SERV

APRIL 28, 2016

http:// 154 | 645 75

Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients

Martin B. Lann, M.D., Craig B. Ternih, M.D., Michael J. Mack, M.D., Ruj E. Makkar, M.D.,

[art G. Sermone, M.D., Ph.D., Sonheel K. Kodali, M.D., Vesod H. Thomani, M.D., E. Muret Tours, M.D.,

D. Craig Millen, M.D., Houseld C. Heinmann, M.D., Dashan Doubi, M.D., David J. Cohen, M.D.,

Augusto D. Pichard, M.D., Server Rapadis, M.D., Todd Desee, M.D., Vasili Babilians, M.D.,

Wilson Y. Sceto, M.D., Mathew F. Williams, M.D., Dean Nelesians, M.D., Allan Zajarian, M.D.,

Rever L., Greaton, M.D., Barier K. Wilsemann, M.D., Robert W. Hodrom, M.D., Jeffey W. Moset, M.D.,

Alifordo Toents, M.D., Dovid L. Binsen, M.D., William F. Fastron, M.D., Phillippe Pikatrot, D.V.M., Ph.D.,

Rebecca T. Halen, M.D., Warl A. Jahren, M.D., William N. Andreson, Ph.D., Maria C. Alu, M.M.,

and John G. Wold, M.D., For the PARTTATR Z Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1817.

JUNE 9, 2011

VOL. 364 NO. 23

Transcatheter and Surgical Aortic-Valve Replacement in High-Risk Patients

Graig R, Smith, M.D., Martin B. Leon, M.D., Michael J, Mack, M.D., D. Graig Miller, M.D., Jeffrey W. Moses, M.D., Lars G. Svensson, M.D., Ph.D., E. Murat Tuzcu, M.D., John G. Webb, M.D., Gregory P. Fontaru, M.D., Haj R. Makkar, M.D., Mathew Williams, M.D., Todd Dewey, M.D., Samir Kapadia, M.D., Vasilis Babaliaros, M.D., Vinod H. Thourani, M.D., Paul Corso, M.D., Augusto D. Pichard, M.D., Joseph E. Bavaria, M.O., Howard C. Herrmann, M.D., Jodi J. Akin, M.S., William N. Anderson, Ph.D., Duolao Wang, Ph.D., and Stuart J. Pocock, Ph.D., for the PARTINER Trial Investigators*

Key Exclusion Criteria

Anatomic

- Aortic annulus diameter < 16 mm or > 28 mm (3D imaging)
- Bicuspid valve (CT imaging)
- Severe AR (> 3+) or MR (> 3+)
- Severe LV dysfunction (LVEF < 30%)
- Severe calcification of aortic valvar complex (esp. LVOT)
- Vascular anatomy not suitable for safe femoral access
- Complex CAD: ULM, Syntax score > 32, or not amenable for PCI
- Low coronary takeoff (high risk for obstruction)

Clinical

- Acute MI within 1 month
- Stroke or TIA within 90 days
- Renal insufficiency (eGFR < 30 ml/min) and/or renal replacement Rx
- Hemodynamic or respiratory instability
- Frailty (objective assessment; > 2/4+ metrics)

Demographics & Vascular Disease		Surgery (N=454)	
Age (years)	73.3 ± 5.8	73.6 ± 6.1	

My Answer

Yes

It is Early to Tell TAVR in All Patients with Aortic Stenosis!

Evolution of Indication

TAVI

Low risk	Low risk	Int. risk	High risk	•	
Age <65	STS <4% and Age > 65-70	STS 4-8	STS 8-12	high risk STS >12	HT
Surgery	Surgery	TAVI = Surgery	TAVI	TAVI	Med.

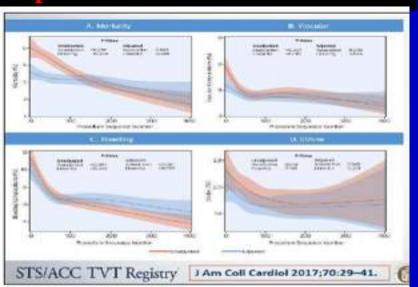
> TAVI?

= TAVI

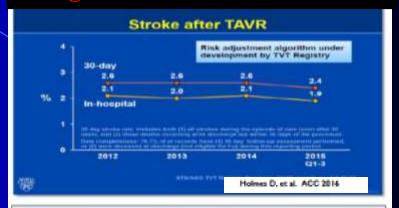
Potential Pitfalls of TAVI in Young <u>Patients</u>

- Stroke and "Silent" embolic event
- Paravalvular leak
- Pacemaker
- Valve thrombosis
- Valve durability
- Redo AVR

Stroke remains an issue


Stroke rates: mean 4% (1.4-9.1%)

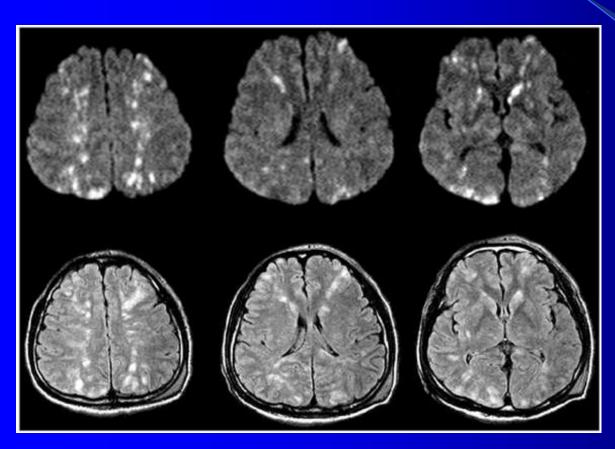
Clinical Stroke Rates with Contemporary TAVR Devices (by Devices)



Politimum, et al., Euro-CR 2017, Manoborary, et al., J Are Coll Caretol Into 2015; 8 1009-47, Monitorary, et al., FCR London Valves 2015; Graha, et al., Euro-CR 3017, Social, Euro-CR 3017, Eur

Stroke is independent of operator experience

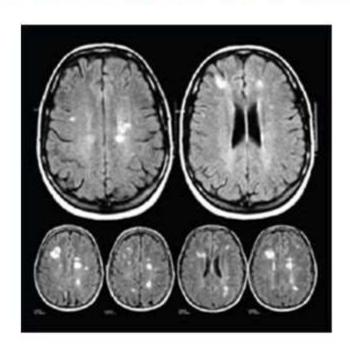
No significant decline in stroke rate

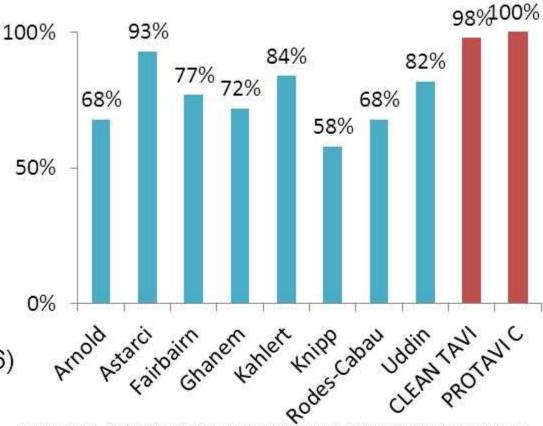


- Over 53,000 USTAVR patients
- · No significant decline in stroke rate over time

No decline in stroke rates with newer generation valves

	devices	Newer generation TAVI devices	Newer generation vs early generation Crude		
			HR (95% CI)	P value	
30-day follow-up					
Early safety composite end point, n (%)	83 (21.2)	81 (20.8)	0.98 (0.72 to 1.33)	0.876	
All-cause dooth, it (%)	19 (4.9)	15 (3.9)	0.80 (0.41 to 1.58)	0.519	
Cardiovascular (earth, n (%)	18 (4.6)	11 (2.8)	0.62 (0.29 to 1.31)	0.210	
CHE, o CNI	17 (4.0)	17 (4.4)	1.00 (0.51 to 1.97)	6.989	
Stroke	16 (4.1)	15 (3.9)	0.94 (0.47 to 1.91)	838.0	
Disabling struke	14 (3.6)	9(2.3)	0.64 (0.28 to 1.49)	0.301	
Non-disabling stroke	2 (0.5)	6(1.6)	3.05 (0.61 to 15.09)	0.172	
Transient ischaemic attack	1 (0.3)	20.9	2.02 (0.18 to 22.25)	0.567	
Myocardial infection, n (%)	2 (0.5)	2 (0.5)	1.00 (0.14 to 7.10)	1,000	
All-cause death or CVE, in (NJ)	26 (6.7)	29 (7.5)	1.13 (0.66 to 1.91)	0.661	

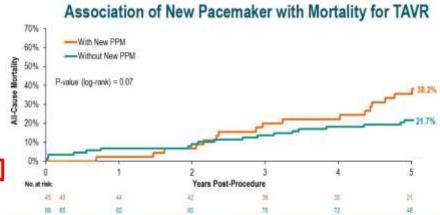

"Silent" stroke is a major concern in young patients!


Captured by embolic protection devices in 80-85% TAVI patients

Silent Embolic Events on DW-MRI after TAVR

- Affect 58-100% of patients
- Multiple infarcts (≤36, x̄ = 4.6)
- · Associated with:
 - Neurocognitive decline
 - >2 fold risk of dementia
 - >3 fold risk of stroke

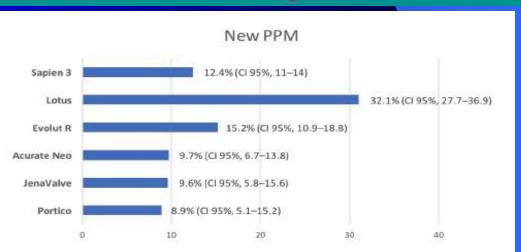
% of Subjects with New Lesions

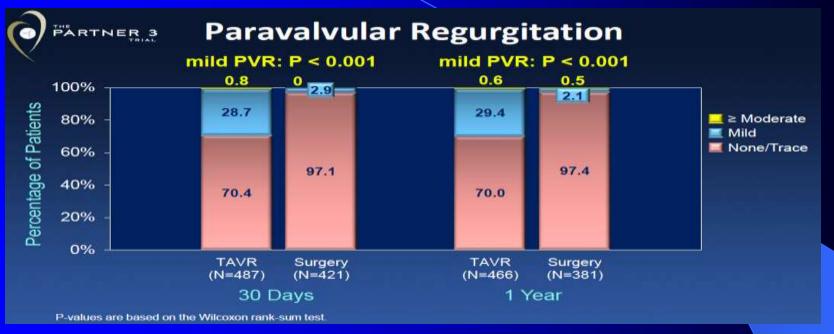

Restrepo et al. Stroke 2002;33:2909, Lund et al. Eur Heart J. 2005;26:1269, Schwarz et al. Am Heart J. 2011;162:756, Knipp et al. Ann Thorac Surg 2008;85:872, Vermeer et al. NEJM 2003; 348:1215, Vermeer et al. Stroke 2003; 34:1126, Arnold et al. JACC Cardiovasc Interv. 2010;3:1126, Astarci et al. J Heart Valve Dis. 2013;22:79, Fairbairn et al. Heart 2012;98:18, Ghanem et al. EuroIntervention. 2013;8:1296, Kahlert et al. Circ. 2010;121:870, Knipp et al. Interact Cardiovasc Thorac Surg. 2013;16:116, Linke et al. TCT 2014, Rodes-Cabau et al. JACC Cardiovasc Interv. 2014;7:1146

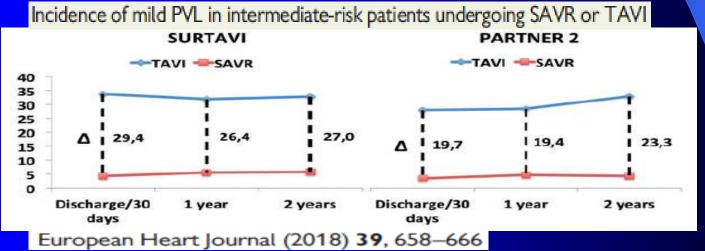
High rate of PPM is not acceptable in health young patients!

17.4% PPM in the CoreValve low risk trial

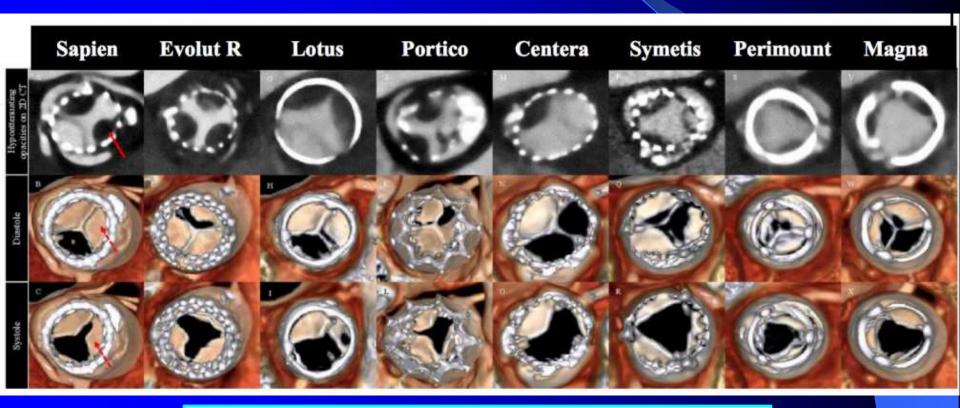
NOTION Trial	Secondary Outcome			
5-Year Outcome, Kaplan-Meier %	TAVR	SAVR	p-value	
Death, any cause	27.7	27.7	0.90	
Death, cardiovascular	21.0	22.5	0.75	
Stroke	10.5	8.2	0.67	
TIA	6.8	4.1	0.35	
Myocardial infarction	8.6	8.7	0.87	
Atrial fibrillation	25.2	62.2	<0.001	
Pacemaker	41.8	8.4	<0.001	
Aortic valve re-intervention	2.5	0.0	0.09	
Valve endocarditis	11.3	5.8	0.10	

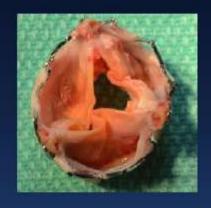





Meta-analysis

Outcomes from a weighted metaanalysis of 30 studies including 5,923 patients achieved with a comprehensive search of multiple Database from January 2011 to March 2016.

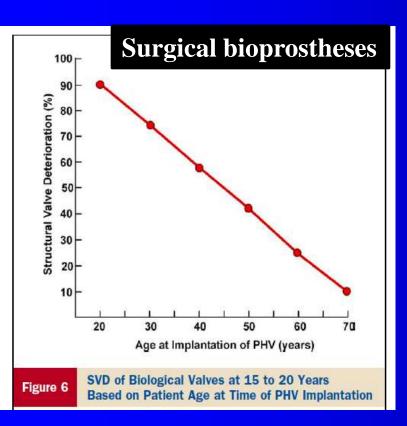

Mild Paravalvular leak is still higher in TAVI Is mild PVL a concern in young patient?


Higher Rate of Valve Thrombosis

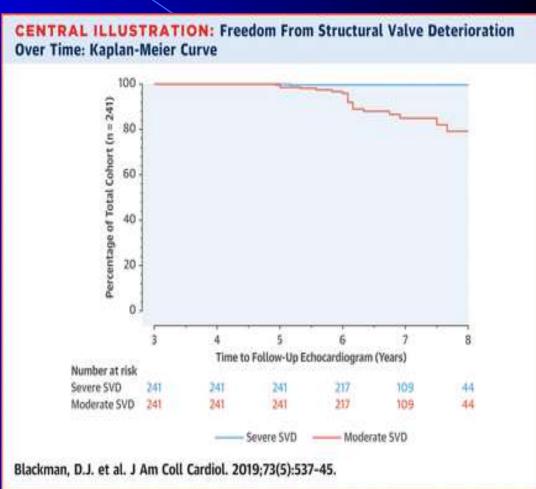
TAVR ~13% SAVR ~5%

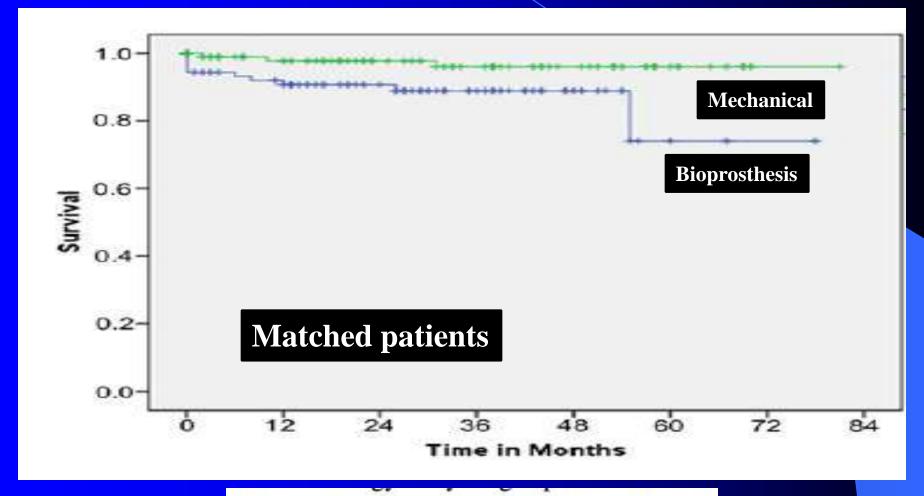
Likely reduce valve durability!

Valve durability is important in healthy young patients!

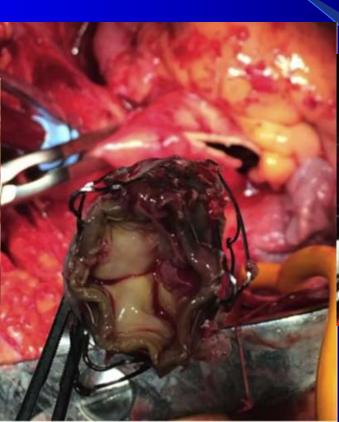


Surgically explanted Sapien and CorveValve THVs



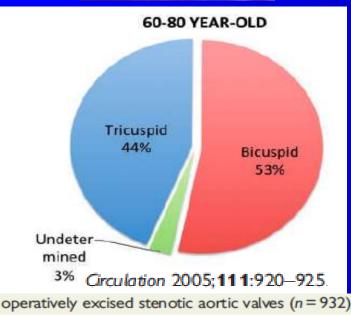

Durability of bioprostheses is poor in young patients

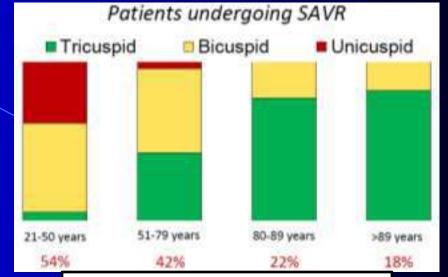
J Am Coll Cardiol 2010;55:2413-26)


Better survival with mechanical valve in young patients (<60 y/o)

J Thorac Cardiovasc Surg 2012;144:1075-83

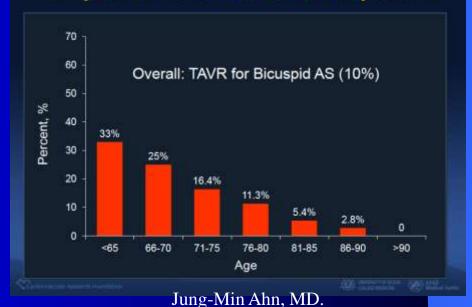
Re-do AVR for failed TAVI is more difficult and complicated

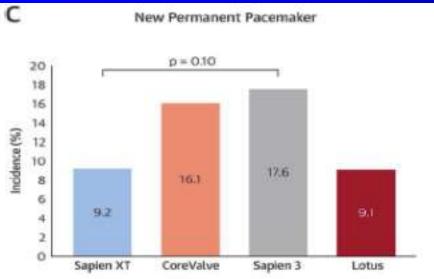



Anatomical Concerns

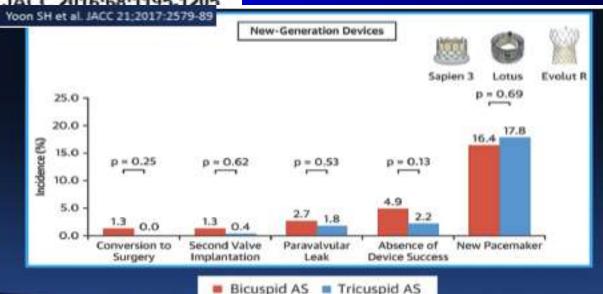
- Bicuspid AV
- Risk of coronary obstruction
- Small annulus and sinus of Valsalva
- Severe annular or subannular calcification

Incidence of bicuspid valve



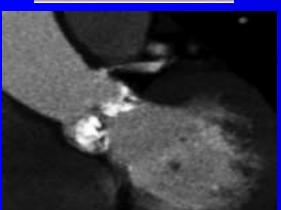

Roberts et al. AJC 2012;109:1632-6

Proportion of TAVR for Bicuspid AS


Issues with Bicuspid AV

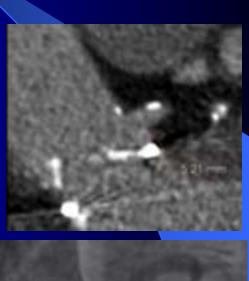
Higher stroke rate

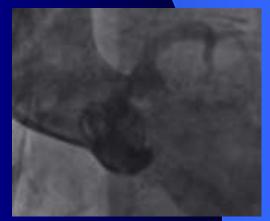
KM estimate %	Bicuspid	Tricuspid AS	p-value
All-cause mortality	2.9	2.1	0.11
All stroke	2.5	0.9	0.0001
Life-threatening bleeding	0.1	0.1	0.98
Major vascular complication	1.0	0.7	0.35
New pacemaker	9.3	8.4	0.42
Aortic valve reintervention	0.2	0.2	0.71


Sung-Han Yoon et al _JACC 2016:68:1195.1205

Other Anatomical Concerns

Potential risk of aortic/annulus rupture





- Potential PPM
- No VinV option for failed TAVI
- Difficulty in coronary access

Risk of Coronary obstruction

My Answer

Yes

It is Early to Tell TAVR in All Patients with Aortic Stenosis!

Too early to recommend TAVI in following patients

- Healthy young patients <65 y/o</p>
- Low risk patients with bicuspid aortic valve
- Low and intermediate risk patients with suboptimal anatomy for TAVI
- Low and intermediate risk patients with small aortic annulus and root (PPM is expected), requiring root enlargement
- Associated with other heart disease that is better treated by OHS